
RPG modelling with Web GME

Raha Naseri

Department of Computer science, University of Antwerp

Abstract

In this report I will discuss the modelling of RPGame using a novel model-
ing tool called webGME. WebGME is a web-Based cloud-based tool which
simplifies the design procedure of the system. This tool employs Model
Integrated Computing (MIC) approach and is very suitable for online collab-
oration and large scale projects due to its version control. In this project I
tried to get as far as possible in modelling RPGame utilizing webGME tool
and outlined my experience and compared it with my previous experience
which was modelling RPGame using the AToMPM tool.

Keywords: WebGME, metamodel, domain specific modeling language

1. Introduction

Considering the increase of systems complexity, implementation of these
systems becomes harder and harder. Here is where the modeling tools can
play a very efficient role in breaking down the complexity. The visualiza-
tion of these tools are helping to simplify the implementation and analysis of
the complex systems as well. WebGME is one of these tools where the user
can implement the metamodel and concrete syntax of the model. Different
features of it like crosscuts give the user the ability to analyze the project
from different point of views. This tool is platform free and can be accessed
immediately from the browser without any installation of the tool or depen-
dencies. The rest of the paper is structured as follows: In the first section
I describe the plan of my project. Section two outlines some of the advan-
tages and disadvantages of the tool. In section three and four I described the
implementation of my project and in section five I discuss the limitations of

Email address: raha.naseri@student.uantwerpen.be (Raha Naseri)

Preprint submitted to ReadingReport January 24, 2015



the tool which prevented my project to be completed according to my initial
plan. Finally I provide a comparison between webGME and AToMPM in
section six and in the last section I provide my conclusions.

2. The Initial Plan

After the first presentation I decided to complete my project according to
the schedule shown below. Initially, Since it was not possible to implement all
the steps of the project in webGME, I had to design only the metamodel and
the concrete syntax of RPGame in webGME, the next step was to implement
the rule-based transformation in webGME which required pIcons of my RPG
model elemenets and the rule-based transformations modeling language. For
this purpose I had to model the rule-based transformation in webGME by
creating its metamodel and concrete syntax, and make the pIcons of my RPG
model elements. Then utilizing them I had to build the rules of RPGame in
webGME. Furthermore I had to create the schedule for the game and execute
it, but since this was not possible in webGME I had to export my project
from webGME and use another tool or method. Henceforth, since the output
file of webGME is a json file the idea was to convert this json file to python
and using a compiler similar to AToMPMs compiler to convert these models
and rules into Himesis graphs. Himesis graph is the core of AToMPM. The
strategy in mapping to himesis graph is that each node(object ) of the game
is mapped into a himesis node or graph and the association relations are
mapped to edges of himesis graph. The himesis nodes have certain attributes
which store the attributes of the models elements. This makes it very simple
to find the matches in rule-based transformation’s LHS. Furthermore these
himesis graphs are executed using py-T-core, what py-T-Core does is that
it finds matches to the corresponding Himesis graph of LHS in the model
and it changes the attributes of objects to their new value according to the
corresponding Himesis Graph of RHS. Finally I had to get the result of the
execution and print it in the form of text but I could not reach these levels
of the project.

. The main obstacle to complete this project according to the initial plan was
the fact that I could not have any association relation between an association
and an Element in webGME. This happened when I tried to impute a label
to every element of my RPGame to imitate the pIcons labeling in AToMPM.
My idea was to create an object called label with an integer attribute Num

2



Figure 1: The general plan of modeling the RPGame using WebGME

which represents the number of label and assign one instance of this object
to every element in the Rule. This was not possible since it was not possible
to create an association between, for instance contains and the label of it.

3. Advantages and Disadvantages

There are some interesting advantages in webGME design which makes
it a modern reactive and scalable Domain specific Modeling tool. Here I
mention some of them according to my experience with this tool:

3



Advantages of webGME:

1. Protypical inheritance : Every model element in webGME is a proto-
type which can be instantiated. An instance is a deep copy of the model,
where there is a dependency relation between the original model and the
instances. Changes in the original model propagates to the instances imme-
diately.

2. Version control:The version control is done by treating all the model
as read-only and updating references whenever a something changes. It only
stores the changes and it propagates it to all the users who are using that
model concurrently. Nevertheless the user does not have to download the
whole database but only the part that he is working on.

3. Collaborative online:Collaborative online working is very well supported,
since all the changes made in the project is applied and visualized to all the
online users immediately. Using the repository the users can easily fork and
branch the project and work in parallel, or analyze any version of the project
without interrupting the other users. The project can reach any version of
it, this is also very effiecient to return to the previous states when something
goes wrong in the project and start over from that point.

4. WebGME is more dynamic than AToMPM from updates aspect. Gen-
erally updates and changes in webGME propagates immediately to model
and metamodel, but in most of other modeling tools it needs to be compiled
and/or saved manually.

5.No seperation line: Using the inheritance the metamodel is not completely
separated from the DSML.In other words there is no specific separation line
between Meta section and Composition section of the tool. Every change in
metamodel propagates the change in the models immediately.

6. Database accessibility:Server gives a scalable access to the models database.
However it is not necessary for the user to download the whole database but
only a small fraction that he is working on. Hence in this way by occupying
the minimum memory space the user can access all the database.

7. Offline working: Offline working is possible in webGME, since the frac-

4



tion that the user is working on is downloaded, user can make changes offline
and these changes can be uploaded whenever the connection is enabled again.

Disadvantages of webGME

There are some issues in webGME that show that this tool is not yet mature
enough to be used and that the developers have to make a lot of improvement
on it. I point out some of these disadvantages here :

1. To create multiple models with a specific language the user has to model
everything in one default composition page. According to the related pa-
pers[1] it has to be possible to use every model element as the building block
for another language. In order to do so, the user has to double click on
the model element in composition page or composition hierarchy and a new
page for that element opens. Practically it is not possible to model anything
in that page because when it opens all the elements of part browser disap-
pear(even the FCO which is used as the seed to create different elements of
the modeling language). Moreover it was not even possible to drag and drop
from the composition hierarchy.

2. Although it is written in the related papers[1] that it is possible to im-
port multiple model languages and merge them in the crosscuts of the tool
but practically it is not. When the user tries to import a model along with
another model the first model disappears.

3. It is not possible to sign in to the tool with a personal account, since
there is no way to sign up or make an account. The user has to log in by
using a default account called demo.

4. It is not possible to import any icon or image in the tool, to create the
icons for the model elements there are only a very limited choice of images in
the tool, which can not be resized or edited as well. Instead there are some
not very useful and handy options in the main toolbar for changing the color
of texts and borders or managing the route of relation arrows and crossing
bumps.

5. The inheritance relation is fixed. What I mean is that it is not possi-
ble to penetrate in the inheritance tree and add or delete an element in the

5



middle of this hierarchy. For example at one point when I found out that I
need to add a superclass for all the objects and I tried to insert this object
in the inheritance tree without recreating its subclasses, it was not possible
since the metamodel only displays these already existing inheritance rela-
tionships; they cannot be edited so I had to restart designing from scratch.

6. The Meta section in webGME is a powerful environment. To design
the abstract syntax of RPGame although it still has some weak points. For
example, the attributes of the objects can have limited types, like string,
integer, float, boolean.

4. RPGame

My previous experience of modeling RPGame using Modeling tools was
with AToMPM where the Game had some entities like Door,Key,Weapon,Obstacle,Scene,etc.
But since I found out that webGME is not a very convinient tool for design-
ing RPGame.in figure 2 I have shown an overview of modeling RPGame in
AToMPM.

For simplicity I eliminated these parts, so in the basic version of RPGame
which I designed in this project there are only the necessary elements like
Tile, Hero, Villain, Goal.

5. Implementation

Considering that I have already described the different parts of user in-
terface of webGME in my reading report, I will give a slight extra description
here. There are 2 main partitions in this tool for metamodel and the model
of the project. Meta is an environment to design the metamodel using the
UML classes and relations and Composition is where we can design our con-
crete syntax and models.

a) Modeling of RPGame

Initially I started opening a new project, this window is where I can open an
existing project or import one or create a new one.

6



Figure 2: RPGame Modeling procedure in AToMPM

As we can see in figure3 the user here has access to all the projects in
database.

The implementation starts with a seed model element called ’FCO’. Due
to the prototypical inheritance property of webGME the model’s element are
all instances of a Root element(FCO). In order to create new classes I dragged
and dropped ’FCO’ into the canvas and start to change the attributes like
name of it using the property editor on the right side of the interface. If I
want a B element to be a subclass of A element than I will just drag and
drop the A element and change the name attribute of it to B. In that case
of course B element will inherit all the attributes of A, so any change during
the project in element A in property editor or metamodel will also change it
in B element immediately. Now when I created the objects of the project I
switch to Meta view to edit the relations, add attributes, constraints, aspects
etc of these elements. In order to visualize the elements in the Meta view, I
have to drag and drop those elements from the composition hierarchy tree on
the right top side of the interface. We can see that the inheritance relation

7



Figure 3: Open new Project

shown with red line is established automatically, and it is not editable. The
relations that can be used here are the pointer relation, containment relation
and set relation which are respectively represented with blue line, black line
and pink line. Association rules are also considered as objects in webGME
so to establish an association relation we have to create an object and then
set the source and destination of the association with pointers in the Meta
view. As an instance a ’Tile Contains TileContent’, so to represent the re-
lation ’contains’ between ’Tile’ and ’TileContent’ I made an object called
’Contains’ and drew a src pointer from ’Contains’ to the source of the as-
sociation(’Tile’) and a dst pointer from ’Contains’ to the destination of the
association(’TileContent’). Since ’Contains’ is an association it will not be
shown in the part browser but it will be displayed as a connection in the
model. In the metamodel there is a filter option where the user can filter
different kind of relations like pointers, containment, etc, this is very useful

8



for the analytical purposes.

Figure 4: MetaModel of RPGame in WebGME

After completing the Metamodel I return to the composition view and start
editing the appearance of the elements, as mentioned before importing icons
and images is not possible in webGME. As a result I tried to choose the
most similiar images from the limited choice for the icons of RPGame model
elements. Figure 4 demonstrates the concrete syntax of the RPG.

After completing the abstract syntax and the concrete syntax of the RPGame,
by using the part browser I can design my test models. For clarity I did not
stick the tiles of the game so that their names and associations are visible.
This is a simple test-case containing all the elements of my RPGame.

9



Figure 5: Concrete syntax of RPGame inWebGME

b) Modeling of Rule-based transformation

The next level as I mentioned earlier is to design the Rule-Based Transfor-
mation Language,and create the pIcons of RPGame model elements where
the elements are associated with a label. These pIcons are used in the Trans-
formation rules. In order to design the Transformation Language initially I
had to create a Pattern object. There are 3 kind of Patterns: LHS, RHS
and NAC. LHS and NAC have a condition to be satisfied and RHS has an
action to be applied. Thus I gave an attribute called Condition to LHS and
NAC objects, and an attribute called Action to RHS. To avoid complexity,
I designed the metamodel of the Rule-based Transformation Language in a
new sheet called Rule-Based Transformation. It is possible to switch between
the sheets of metamodels of the project from the tab on top of the canvas.

10



Figure 6: A testcase of RPGame in WebGME

As we can see in this UML, a pattern contains multiple labels so I drew a
composition relation between pattern and the label. There is an association
between each label and the pattern, I called this attribute Pattern’s Label.
Now to create labeled icons(pIcons) for RPGame elements I had to make an
association between the model elements and the label hence I had to add the
object ’Label’ to the metamodel of my RPGame and create an association
called HasLabel between ’Label’ and ’FCO’. In this way all the children of
’FCO’ including the model elements and the associations could have a label
if necessary.

Furthermore I tried to design the attributes and appearance of the model
elements of Rule-Based Transformation Language and again due to the lim-
itations of images, I tried to choose the most appropriate images for each
element. The following figure shows the concrete syntax of the rule-based
transformation. By setting the display format to ’Num’ I could make the
label be displayed by the value of its Num attribute.

After completing the concrete syntax of the rule-based transformation lan-
guage, I had the appropriate infrastructure to design the rules of RPGame.
The rule that I implemented was a simple rule, where the Hero wants to
move from a tile to another tile on the right side of it. This rule consists
of one NAC pattern, a LHS and a RHS pattern, the LHS is the case that

11



Figure 7: MetaModel of Rule-Based Transformation in WebGME

Figure 8: Concrete syntax of Rule-Based Transformation inWebGME

the hero is in the left side tile and the right hand side is the case where the
hero is in the right side tile, but this will happen in the case that there is no
villain in the right side tile, so as you can see in figure 9 I tried to implement
this as the Negative Application Condition(NAC) of the rule.

This stage was actually were I met an impasse and further progress became

12



Figure 9: A Rule of RPGame in WebGME

halted for me.

6. The Obstacle

According to a related paper authored by the developers of the tool [1],
connections are ordinary models; they can contain children, have other point-
ers and can be derived, etc. Therefore, the connection concept as such is not
part of the meta-metamodel.
According to this, what I tried to do was to assign a label to every existing
object of RPGame in the rule including the Model elements and the associ-
ations, I had to do this by drawing an association which I designed earlier in
the UML called has label between the objects and their corresponding label.
This was possible for the entities like Tile or TileContents but it was not pos-
sible for the associations. Although according to its UML since the ’HasLa-
bel’ association’s source is FCO and all the associations are children of FCO,

13



so it has to be possible to have any kind of the association of the RPGame
as the source of HasLabel.
In the following figure you can see the LHS of the rule,where as an example
the association Left has to be associated with the corresponding label of it
number 4.

Figure 10: the LHS of a rule of the RPGame in WebGME

7. ATOMPM vs webGME

Personally what I suppose is that in RPGame modelling AToMPM out-
performs webGME. Here are some comparisons between these two tools:

- AToMPM environment is a complete package where the user can imple-
ment all the stages of modelling including abstract syntax, concrete syntax,
rule-based transformation, creating execution schedules and executing the
model whereas in webGME environment the user is only able to implement
the first two stages.

14



- While AToMPM is able to support complexity it has a very plain structure,
it is much more user friendly and everything is visualized as much as possible.

- It is not possible to import images in the tool or edit the existing lim-
ited images in webGME while this is possible in AToMPM.

- In AToMPM to generate the model elements and the metamodel, the UML
has to be saved and compiled while in webGME this is done automatically.

- Online collaboration in AToMPM is more static and not very efficient while
this is implemented excellently in webGME using the version control.

- To work with AToMPM the user initially has to download the database
but in webGME has only to download the small fraction that he is working
on at a time while he can access any part of the database.

8. Conclusion

As is plainly evident webGME is not the best choice to model an RPGame.
This is mostly because of its immaturity and incompleteness. On the other
hand what I believe is that generally webGME is more efficient and useful
for large scale projects where many users want to work and analyze it simul-
taneously. Despite the weaknesses and its lacks, I have to mention that it
supports the version control and online collaboration without fail and it has
handy options to get different views in different aspects from the project.
This is very useful for analyzing the project from different aspects. The filter
and the aspect option in metamodel and crosscuts are some of these options.

References

[1] M. Maroti, T. Kecskes, R. Kereskenyi, B. Broll, P. Volgyesi, L. Juracz,
T. Levendoszky, A. Ledeczi, Next Generation MetaModeling: Web- and
Cloud-based Collaborative Tool Infrastructure,Institute for Software Inte-
grated Systems, Vanderbilt University, Nashville, TN, USA.

[2] M. Maroti, T. Kecskes, R. Kereskenyi, P. Volgyesi, A. Ledeczi, On-
line Collaborative Environment for Designing Complex Computational Sys-

15



tems,Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA.

[3] E. Magyari, A. Bakay, A. Lang, T. Paka, A. Vizhanyo, A. Agarwal, G.
Karsai, UDM: An Infrastructure for Implementing Domain-Specific Mod-
eling Languages,Institute for Software Integrated Systems, Vanderbilt Uni-
versity, Nashville, TN, USA.

[4] URL: https://github.com/webgme/webgme/blob/master/docs/tutorial.html

[5] URL: https://www.youtube.com/watch?v=0YCo4cpoB7k

[6] URL: https://www.youtube.com/watch?v=7eFP75n5lTY

[7] URL: http://www.isis.vanderbilt.edu/tools/GReAT

16


